Huet S, Gorré H, Perrocheau A, Picot J, Cinier M.
Use of the Nanofitin Alternative Scaffold as a GFP-Ready Fusion Tag
Abstract

With the continuous diversification of recombinant DNA technologies, the possibilities for new tailor-made protein engineering have extended on an on-going basis. Among these strategies, the use of the green fluorescent protein (GFP) as a fusion domain has been widely adopted for cellular imaging and protein localization. Following the lead of the direct head-to-tail fusion of GFP, we proposed to provide additional features to recombinant proteins by genetic fusion of artificially derived binders. Thus, we reported a GFP-ready fusion tag consisting of a small and robust fusion-friendly anti-GFP Nanofitin binding domain as a proof-of-concept. While limiting steric effects on the carrier, the GFP-ready tag allows the capture of GFP or its blue (BFP), cyan (CFP) and yellow (YFP) alternatives. Here, we described the generation of the GFP-ready tag from the selection of a Nanofitin variant binding to the GFP and its spectral variants with a nanomolar affinity, while displaying a remarkable folding stability, as demonstrated by its full resistance upon thermal sterilization process or the full chemical synthesis of Nanofitins. To illustrate the potential of the Nanofitin-based tag as a fusion partner, we compared the expression level in Escherichia coli and activity profile of recombinant human tumor necrosis factor alpha (TNFα) constructs, fused to a SUMO or GFP-ready tag. Very similar expression levels were found with the two fusion technologies. Both domains of the GFP-ready tagged TNFα were proved fully active in ELISA and interferometry binding assays, allowing the simultaneous capture by an anti-TNFα antibody and binding to the GFP, and its spectral mutants. The GFP-ready tag was also shown inert in a L929 cell based assay, demonstrating the potent TNFα mediated apoptosis induction by the GFP-ready tagged TNFα. Eventually, we proposed the GFP-ready tag as a versatile capture and labeling system in addition to expected applications of anti-GFP Nanofitins (as illustrated with previously described state-of-the-art anti-GFP binders applied to living cells and in vitro applications). Through a single fusion domain, the GFP-ready tagged proteins benefit from subsequent customization within a wide range of fluorescence spectra upon indirect binding of a chosen GFP variant.

PLoS One. 2015;10: e0142304.


Cinier M, Petit M, Pecorari F, Talham DR, Bujoli B, Tellier C.
Engineering of a phosphorylatable tag for specific protein binding on zirconium phosphonate based microarrays

Abstract
A phosphorylatable tag was designed and fused at the C-terminal end of proteins, which allowed efficient and oriented immobilization of capture proteins on glass substrates coated with a zirconium phosphonate monolayer. The concept is demonstrated using Nanofitin directed against lysozyme. This peptide tag (DSDSSSEDE) contains four serines in an acidic environment, which favored its in vitro phosphorylation by casein kinase II. The resulting phosphate cluster at the C-terminal end of the protein provided a specific, irreversible, and multipoint attachment to the zirconium surface. In a microarray format, the high surface coverage led to high fluorescence signal after incubation with Alexa Fluor 647 labeled lysozyme. The detection sensitivity of the microarray for the labeled target was below 50 pM, owing to the exceptionally low background staining, which resulted in high fluorescence signal to noise ratios. The performance of this new anchoring strategy using a zirconium phosphonate modified surface compares favorably with that of other types of microarray substrates, such as nitrocellulose-based or epoxide slides, which bind proteins in a nonoriented way.

Journal of biological inorganic chemistry; 2012 Mar;17(3):399-407


Miranda FF, Brient-Litzler E, Zidane N, Pecorari F, Bedouelle H
Reagentless fluorescent biosensors from artificial families of antigen binding proteins

Abstract
Antibodies and artificial families of antigen binding proteins (AgBP) are constituted by a connected set of hypervariable (or randomized) residue positions, supported by a constant polypeptide backbone. The residues that form the binding site for a given antigen, are selected among the hypervariable residues. We showed that it is possible to transform any AgBP of these families into a reagentless fluorescent biosensor, specific of the target antigen, simply by coupling a solvatochromic fluorophore to one of the hypervariable residues that have little or no importance for the interaction with the antigen, after changing this residue into cysteine by mutagenesis. We validated this approach with a DARPin (Designed Ankyrin Repeat Protein) and a Nanofitin (also known as Affitin) with high success rates. Reagentless fluorescent biosensors recognize their antigen in an immediate, quantitative, selective and specific way, without any manipulation of the sample to analyze or addition of reagent.

Biosensor & Bioelectronics; 2011 Jun 15;26(10):4184-90


Cinier M, Petit M, Williams MN, Fabre RM, Pecorari F, Talham DR, Bujoli B, Tellier C
Bisphosphonate adaptors for specific protein binding on zirconium phosphonate-based microarrays

Abstract
Two bisphosphonate adaptors were designed to immobilize histidine-tagged proteins onto glass substrates coated with a zirconium phosphonate monolayer, allowing efficient and oriented immobilization of capture proteins, affitins directed to lysozyme, on a microarray format. These bifunctional adaptors contain two phosphonic acid anchors at one extremity and either one nitrilotriacetic acid (NTA) or two NTA groups at the other. The phosphonate groups provide a stable bond to the zirconium interface by multipoint attachment and allow high density of surface coverage of the linkers as revealed by X-ray photoelectron spectroscopy (XPS). Reversible high-density capture of histidine-tagged proteins is shown by real-time surface plasmon resonance enhanced ellipsometry and in a microarray format using fluorescence detection of AlexaFluor 647-labeled target protein. The detection sensitivity of the microarray for the target protein was below 1 nM, despite the monolayer arrangement of the probes, due to very low background staining, which allows high fluorescent signal-to-noise ratio. The performance of these Ni-NTA-modified zirconium phosphonate coated slides compared favorably to other types of microarray substrates, including slides with a nitrocellulose-based matrix, epoxide slides, and epoxide slides functionalized with Ni-NTA groups. This immobilization strategy has a large potential to fix any histidine-tagged proteins on zirconium or titanium ion surfaces.

Bioconjugate Chemistry; 2009 Dec;20(12):2270-7


Buddelmeijer N, Krehenbrink M, Pecorari F, Pugsley AP.
Type II secretion system secretin PulD localizes in clusters in the Escherichia coli outer membrane

Abstract
The cellular localization of a chimera formed by fusing a monomeric red fluorescent protein to the C terminus of the Klebsiella oxytoca type II secretion system outer membrane secretin PulD (PulD-mCherry) in Escherichia coli was determined in vivo by fluorescence microscopy. Like PulD, PulD-mCherry formed sodium dodecyl sulfate- and heat-resistant multimers and was functional in pullulanase secretion. Chromosome-encoded PulD-mCherry formed fluorescent foci on the periphery of the cell in the presence of high (plasmid-encoded) levels of its cognate chaperone, the pilotin PulS. Subcellular fractionation demonstrated that the chimera was located exclusively in the outer membrane under these circumstances. A similar localization pattern was observed by fluorescence microscopy of fixed cells treated with green fluorescent protein-tagged affitin, which binds with high affinity to an epitope in the N-terminal region of PulD. At lower levels of (chromosome-encoded) PulS, PulD-mCherry was less stable, was located mainly in the inner membrane, from which it could not be solubilized with urea, and did not induce the phage shock response, unlike PulD in the absence of PulS. The fluorescence pattern of PulD-mCherry under these conditions was similar to that observed when PulS levels were high. The complete absence of PulS caused the appearance of bright and almost exclusively polar fluorescent foci.

Journal of Bacteriology; 2009 Jan;191(1):161-8


Krehenbrink M, Chami M, Guilvout I, Alzari PM, Pecorari F, Pugsley AP
Artificial binding proteins (Affitins) as probes for conformational changes in secretin PulD

Abstract
The DNA-binding protein Sac7d was previously modified to bind with high affinity to the N domain of the outer membrane secretin PulD from the bacterium Klebsiella oxytoca. Here, we show that binding of the Sac7d derivatives (affitins) to PulD is sensitive to conformational changes caused by denaturant and by the zwitterionic detergent Zwittergent 3-14 routinely used to extract secretins from outer membranes. This sensitivity to the conformational state of PulD allowed us to use the affitins as probes for the native structure of PulD and to devise protocols for examining in vitro synthesized protein in nonionic detergent and for the affinity purification of native PulD using affitins as ligands. When fused to periplasmic PhoA, three affitins inhibited PulD multimerization in vivo and caused loss of function. In two cases, this was likely to be due to dimerization of the affitin by the bound PhoA, as the effect was absent when the affitins were fused to monomeric MalE. In the third case, the MalE and PhoA moieties probably interfered sterically with PulD protomer interactions and, thereby, inhibited multimerization. None of the affitins tested interacted with PulD at sites of protomer interaction or blocked the secretin channel through which exoproteins cross the outer membrane in the Type II secretion pathway of which PulD is a key component.

Journal of Molecular Biology; 2008 Nov 28;383(5):1058-68


Mouratou B, Schaeffer F, Guilvout I, Tello-Manigne D, Pugsley AP, Alzari PM, Pecorari F
Remodeling a DNA-binding protein as a specific in vivo inhibitor of bacterial secretin PulD

Abstract
We engineered a class of proteins that binds selected polypeptides with high specificity and affinity. Use of the protein scaffold of Sac7d, belonging to a protein family that binds various ligands, overcomes limitations inherent in the use of antibodies as intracellular inhibitors: it lacks disulfide bridges, is small and stable, and can be produced in large amounts. An in vitro combinatorial/selection approach generated specific, high-affinity (up to 140 pM) binders against bacterial outer membrane secretin PulD. When exported to the Escherichia coli periplasm, they inhibited PulD oligomerization, thereby blocking the type II secretion pathway of which PulD is part. Thus, high-affinity inhibitors of protein function can be derived from Sac7d and can be exported to, and function in, a cell compartment other than that in which they are produced.

Proceedings of the National Academy of Science of the USA. 2007 Nov 13;104(46):17983